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An old acquaintance: the Diffusion NMR experiment
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Flow: signal phase modulation instead of decay.



THE HAHN SPIN ECHO” EXPERIMENT (1949)
IS NOW 60 YEARS OLD

Hahn also described the basic NMR
diffuson experiment and related things
(Phys. Rev., 80 (1950) 580-594)
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A more recent friend: the eNMR experiment

K. J. Packer 1969
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Charge is a measure of association that is often more sensitive
than the hydrodynamic radius obtained by diffusion NMR.



Potant al

Potant al

Electrophoresis, electroosmosis,...

~ zeD  Electrophoresis: individual molecules.

Hep = kKT Electroosmosis: viscous drag on the solvent.
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Electroosmosis can lead to bulk convectional flow.



eNMR: making the charged particles FLOW
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”Conventional” arrangement: U-tube!

Advantages: no external wire into the
NMR sample coil volume, no noise pickup,
any bubbles exit upward.

Disadvantages of the U-tube design:

- the sign of U Is not obtained, cosine
modulation of the signal!

- low filling factor and thereby very weak
NMR signal

- results strongly depend on the quality of
the anti-electroosmotic coating



POSSIBLE SAMPLE GEOMETRIES FOR eNMR
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(From C.S Johnson, Jr., Encyclopedia of NMR)



NOVEL SAMPLE CELLS FOR eNMR

' ' |
insulation The sign of p Is preserved!
It fits to routine probes!
The filling factor is large!
r
electrode Requires novel RF filters!

' J. Magn. Reson. 192 69-77 (2008).
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One filter stage Is inside
this brass ”spinner”
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insulation

electrode

RF coil

Figure 4: Photograph and schematic of the electrophoretic cell developed by Hallberg et al
', Photograph copyright F. Hallberg. The electrophoretic sample cell is based on a
conventional 5 mm NMR tube. The distance between the electrodes is roughly 3 cm. '
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"Bunsen, I must tell you how excellent your study of
chemical spectroscopy 1s, as 15 your pioneer work in
photochemistry — but what really impresses me is that
cute httle burner you've come up with."




Phase shift « displacement for charged entities,
Irrespective how they obtain their charge...
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10 mM LiCIO, and 10 mM EO units in M, = 22000 low
polydispersity PEO dissolved in d;-acetonitrile.

Li* binds to PEO...



Phase shift ccdisplacement  Uncharged molecules incl
— water: should not move!
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Because of the preserved sign of displacement, electroosmotic effects
can be corrected for — the accuracy improves by more than an order
of magnitude! Will eNMR become a routine method?



Will eNMR become a routine method?

e moderate electroosmosis is not a problem any more.
« sample holder fits to routine probes.

e voltages/currents sufficient for many applications
are relatively easy to generate, so are suitable
external triggers.

e conductivity must be In a suitable range.

 Joule heating is a limiting factor.

* electrode reactions may happen.



APPLICATION: ASSOCIATION OF A CHARGED
SURFACTANT (DeTAB OR CsPFQO) WITH NON-
CHARGED CYCLODEXTRINS

~ @ =@

Surfactant complex

\

H CD,0obs - p,Ll complex

1_ 'uS,obs o luCD,obs

~P =
'uS,obs — p'ucomplex T (1_ p)luS freg luS, free
Similarly from D= 1 DCD,obs - DS,obs
diffusion coefficients: D - D
CD, free S, free

J. Am. Chem. Soc. 130 7550-7551 (2008).



Fraction bound molecules obtained (c) Nominal charges (z)
from diffusion coefficients (a) and obtained from

electrophoretic mobilities (b). ,uk T
7=—2"
eD
D 7 Z p p
(10" m?*s) | (10° m¥Vs)
DeTA" 551 19.9 0.93
PFO 4.96
___ a-CD 2.75 0
B-CD 2.56 0
DeTA*/o-CD 3.04/2.61 10.7/8.1 0.80 084 | 0.87
DeTA*/B-CD 2.87/2.42 11.0/7.8 0.82 085 | 0.84
__PFO7/o-CD 4.48/2.63 [-1.6 017 | 0.15
PFO/B-CD 2.71/2.38 /-8.3 -097 | 0.87




APPLICATION: ELECTROOSMOTIC DRAG
IN FUEL CELL MEMBRANE MATERIALS
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Fuel cell performance depends
on transport coefficients. @ HO



gas diffusion

layer Teflon cap

_ Teflon tube
Nafion

Pt electrode

Experiments with
Direct Methanol Fuel
Cells (DMFC) -
Nafion saturated with
methanol/water
mixtures.
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Electrochim. Acta, accepted (2010).



Phase connects to drift velocity:

Water H + ~
V. = i 9 Methanol OH +§ }
i 0 ethano +r
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Phase (degrees)
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APPLICATION: ION PAIRING BETWEEN ANIONS IN
THE HOFMEISTER SERIES AND THE
TETRAMETHYLAMMONIUM CATION (TMA™)

lons are ordered according to their relative influence on
the physical behavior of agueous processes such as

o protein solubility and stability
e surface tension

e micelle formation

Hofmeister series of some anions:

SO >F >Ac >Cl">Br >NO; >1">CIO, >SCN-

J. Am. Chem. Soc. 131 13900-13901 (2009).



Conventional approach: measuring diffusion.
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IH diffusion experiments on the TMA* ion.
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lon pairing to TMA™ correlated with...

the order of anions in the

. . the 1onic radii of anions
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A SIMILAR DIFFUSION APPLICATION:
ION PAIRING IN IONIC THERMOTROPICS
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Chem. Comm. 46 728-730 (2010).



Diffusion of the different ions — exploring the chemical selectivity.

Broad lines (T, ~ ms) require large (up to 10 T/m) gradients.
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The net charge transport (ion conductivity) is lowered in the

Isotropic phase by ion pairing.



Thank You!



