Exotic Magnetism and Superconductivity in Actinide compounds

Advanced Science Research Center Japan Atomic Energy Agency Shinsaku KAMBÉ

5f-system Last unexplored summit for strongly correlated electron physics

5f-strongly correlated magnetism

3d strongly correlated itinerant magnetism High Tc supercondivity 1986~

<u>_____</u>

4f strongly correlated itinerant magnetism Kondo-effect , Heavy fermion (dense Kondo) 1975 ~

3d and 4f insulating (localised) magnetism=>Strongly correlated limit Metal-Insulator transition(Mott), Superexchange (P.W. Anderson) 1949~

The dawn of magnetism Exchange model : Heisenberg1928 Non-correlated magnetism : Localized(Langevin1905) Itinerant (Pauli1927 Landau1930)

語を主の第

HOKUSAI

Physical problems in strongly correlated 5f systems

NMR for Identification of Exotic phases

Internal field =>Zeeman Interaction (Shift) Orbital ordering=> Quadrupolar Interaction (v_Q) Fluctuation around Phase transition=> nuclear relaxations (T_1, T_2)

Multipolar ordering

Superconducting symmetry

Temperature

Outline of talk

 Introduction to Multipolar Ordering
 ¹⁷O-NMR study of Octupolar ordering in NpO₂ and AmO₂
 Introduction to Unconventional superconductivity
 AI-NMR study of d-wave superconductivity in NpPd₅Al₂

Part I Multipolar ordering

Multipole moments

electric multipoles monopole $d\mathbf{r} \varphi^*(\mathbf{r}) \varphi(\mathbf{r})$

charge: charge ordering

quadrupole $\int d\mathbf{r} \varphi^*(\mathbf{r}) x y \varphi(\mathbf{r})$

anisotropy in charge distribution: usual orbital order \rightarrow Jahn-Teller magneticmultipolesdipole $<math display="block">d\mathbf{r}\varphi^{*}(\mathbf{r})M_{x}\varphi(\mathbf{r})$

spin: usual magnetic order

octupole $\int d\mathbf{r} \varphi^*(\mathbf{r}) xy M_z \varphi(\mathbf{r})$ anisotropy in spin distribution

Spin Up

Spin Down

Np02 Octupolar ordering

Electronic state of AnO₂

AnO₂ (UO₂, NpO₂, PuO₂...)
 Well studied as nuclear fuel, but low temperature properties are still mysterious!

Highly degenerated f-levels due to cubic symmetry

$$j = 7/2$$

$$j = 7/2$$

$$\Gamma_7$$

$$s = 1/2$$

$$j = 5/2$$

$$\Gamma_8$$

Crystal structure of AnO₂

Mysterious ordering in NpO₂

UO₂ is AFM PuO₂ is non magnetic

What is the order parameter of NpO₂? <u>AFM \rightarrow No</u> dipole moment = 0 Neutron, Mössbauer $\mu_0 < 0.01\mu_B/Np.$

AFQ → No? Broken TR sym. Susceptibility, μ SR No lattice distortion at T₀

 \rightarrow Octupolar(AFO)?

T-dependence of Magnetic susceptibility

Magnetic X-ray scattering

AFO(Γ_5): Primary order parameter induces AFQ

$AFQ(\Gamma_5)$ is observed: secondary order parameter

Triple-q AFQ

AFQ ordered structure from Magnetic X-ray scattering J. A. Paixao et al, PRL89 (2002)

Micro scopic j-j coupling model for NpO₂ K. Kubo and T. Hotta PRB 72, 144401 (2005).

Fcc: Γ_{5v} longitudinal triple-q AFO

¹⁷O-NMR in the ordered phase

NMR spectrum is splitted in the ordered phase

 \rightarrow Hyperfine field due to ordered moment

Emergence of two oxygen sites O(1): isotropic O(3) : anisotropic(uniaxial) Sites number ratio O(1):O(3)=1:3Y.Tokunaga et al., PRL 94(2005)

Origin of two Oxygen sites

Triple-q structure Lowering of symmetry $Fm\overline{3}m \rightarrow Pn\overline{3}m$

Appearance of two different oxygen site O(1) and O(3) with intensity O(1):O(3)=1:3

O(3)

Comparison with model

Beyond NpO₂: AmO_2 (Am^{4+} : 5f⁵)

Susceptibility : AFM-like phase transition at 8.5K

Neutron, Mössbauer: No-dipolar moment below 8.5 K.

Multipolar ordering? ¹⁷O-NMR in progress

From *T*-dependence of susceptibility

D.G.Karraker, The Journal of Chemical Physics, Vol.63, 3174 (1975)

Part II Unconventional Superconductivity

Superconducting

Tc

Τ

Condensation energy below Tc

Free energ

k and – k Cooper paring in k-space

Occupied

Fermi sea

-k

(Inversion symmetrical case)

What's happens in unconventional Superconductivity?

Anisotropic Superconducting gap/

Conventional => isotropic full superconducting gap Unconventional => anisotropic partial superconducting gap

Alternative Spin Paring

Conventional => Singlet paring (s-wave) Unconventional => Singlet (d-wave) or Triplet (p-wave)

NpPd₅Al₂ PuRhGa₅ PuCoGa₅ d-wave superconductors

Np, Pu based New superconductors

Specific heat is very large $\gamma \sim 10^2 \text{mJ/K}^2 \text{mol} =>$ Heavy fermion Tc is very high ~10K compared with ~ 1K in Ce heavy fermion systems

NpPd₅Al₂ Tc=5K D. Aoki et al JPSJ 2007 Next talk !

PuCoGa₅ Tc=18K J. Sarrao et al Nature 2002

Characteristics of Crystal Structures PuRhGa₅ & NpPd₅Al₂

Similarities Tetragonal Lattice parameter of a-axis Layered structure

Dissimilarities Lattice parameter of c-axis ~2 times longer Actinide layers stacking in alternate phase along c-axis

bcc lattice Nearest hybridization path

- 5f (Pu) 4p (Ga)
- 5f (Np) 4d (Pd)

tetra. HoCoGa₅-type

tetra. ZrAl₅Ni₂-type

Spin-lattice relaxation rate 1/T₁ H. Chudo et al in NpPd₅Al₂

No coherence peak at Tc $1/T_1 \propto T^3$ below T_c

anisotropic SC gap (d or p-wave)

Knight shift in the superconducting state of NpPd₅Al₂

H. Chudo et al JPSJ 2008

T-dependence of Knight shift

Spin susceptibility decreases below Tc=>Spin singlet sate

Symmetry of superconducting state in NpPd₅Al₂

Anisotropic gap and Spin-singlet state =>d-wave state

Superconducting gap and residual density of states

	2∆ ₀ /k _B T _c	Residual DOS Nr/N(0)
$NpPd_5Al_2$	6.4	0.47
PuRhGa ₅ a)	5	0.23
PuCoGa ₅ ^{b)}	8	0.4
CeCoIn ₅ ^{b)}	9	0.08

a) Sakai et al JPSJ2005 b) Yashima et al JPSJ2004

 $2\Delta_0/k_BT_c>3.5 =>$ Strong coupling Nr => radiation damage

Residual DOS Nr

Collaboration

NMR Group JAEA Y. Tokunaga, H. Sakai, H. Chudo Michigan Univ. R.E.Walstedt

High quality Sample preparation JAEA Y. Haga, T.D. Mastuda Tohoku Univ. D. Aoki, Y. Homma, Y. Shiokawa Osaka Univ. Y. Onuki

Perspectives

Route to new phenomena

Peak 5f

Search for ²³⁵U-NMR in paramagnetic state under very high field or in solution
 Investigations of AnO₂
 Ground states and defects