Unprecedented Structures driven by the Phosphinamide Linkage – A Multinuclear NMR Touch

Ignacio Fernández

Universidad de Almería (Spain)

EURACT NMR KARLSRUHE 2010



- Analogues having the capability of mimicking the transition state of enzymatic amide formation or hydrolysis.
- They could therefore act as enzymatic inhibitors.
- This potential activity drives us to find some structural diversity.

- And interestingly, phosphinamide reactivity could be selectively tuned depending on the conditions assayed.

## 1) Diethyl Ether - $C_{\alpha}$ metalation

Electrophile





 $E = RX, RCHO, X(CH_2)_n C(O)R$ RHC=CH(O)R, R<sub>3</sub>SnX

Ph

Ph

**₽**<sup>2</sup>

*Chem. Commun.* **2004**, 1142 *Org. Lett.* **2008**, 10, 537 1) Diethyl Ether -  $C_{\alpha}$  metalation











P200601793. (ES) **2006** *Org. Lett.* **2008**, 10, 537

#### 1) Diethyl Ether - $C_{\alpha}$ metalation - Asymmetric Induction



*Org. Lett.* **2008**, 10, 3195

#### 1) Diethyl Ether - $C_{\alpha}$ metalation - Double Asymmetric Induction



- 1) RLi, (-)-sparteine, -90 °C 2) Electrophile-1
- 3) RLi, (-)-sparteine, -90 °C 4) Electrophile-2





*Org. Lett.* **2008**, 10, 3195

## 2) Tetrahydrofuran - Anionic cyclization



 $E^+$  = H<sup>+</sup>, RX, RCHO, RHC=CH(O)R, R<sub>3</sub>SnX

ΗH

`Ph

*Org. Lett.* **2001**, *3*, 1339 *J. Am. Chem. Soc.* **2004**, *126*, 12551

#### 2) Tetrahydrofuran - Anionic asymmetric cyclization











Chem. Commun. 2005, 5408

#### 2) Tetrahydrofuran - Anionic cyclization









*J. Org. Chem.* **2003**, *68*, 4472 PCT/WO2008/0003809A1, **2008**  3) Tetrahydrofuran - Ortho metalation



*Org. Lett.* **2010**, *12*, ASAP

## 3) Tetrahydrofuran - Ortho metalation



Tiempo (min)

*Organometallics* **2009**, *28*, 1739

# PGSE Diffusion NMR



# SOLUTION STRUCTURE ??

Multinuclear NMR X/Y Shift Correlation



Stejskal-Tanner, 1965





Bipolar Pair Pulses, 1993



The effect of the gradient over  $w_L$ 

 $\omega_L = \gamma \ B_o + \gamma \ G \ z$ 

The dephase angle experienced depends on the position along the z axis, that is given by





![](_page_15_Picture_0.jpeg)

![](_page_15_Figure_1.jpeg)

![](_page_15_Picture_2.jpeg)

![](_page_15_Figure_3.jpeg)

## Hydrodynamic Radius from the Diffusion Coefficient

The diffusion coefficient is defined by

![](_page_16_Picture_2.jpeg)

For a sphere of known r radius, the friction factor is

Stokes Equation

![](_page_16_Picture_5.jpeg)

Stokes-Einstein Equation

![](_page_16_Picture_7.jpeg)

For molecules with radii below 5 Å, semi-empirical expressions can be used that take into account the effects of the solvent of choice

$$c = 6 \times \left(\frac{3r_d}{r_H} + \frac{1}{\left(1 + \frac{r_d}{r_H}\right)}\right)^{-1}$$

$$c = 6 \times \left[ 1 + \left( 0.695 \times \left( \frac{r_d}{r_H} \right)^{2.234} \right) \right]^{-1}$$

*J. Phys. Chem.* **1984**, *88*, 5118. *Phys. Chem.* **1987**, *91*, 3612.

## Diffusion ---- Molecular sizes !!

Ion Pairing

Aggregation

#### Contact Ion Pair

#### Solvent Separated Ion Pair

![](_page_17_Figure_5.jpeg)

![](_page_18_Figure_0.jpeg)

![](_page_19_Figure_0.jpeg)

Chem. Eur. J. 2005, 11, 1495-1506

#### PGSE NMR, THF, 60 mM, -118 °C (concentric tubes)

 $D(Li{HMPA}_{4}) = 0.142 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$ NMe<sub>2</sub> Me<sub>2</sub>N MMe<sub>2</sub> D (free HMPA) = 0.351 × 10<sup>-10</sup> m<sup>2</sup> s<sup>-1</sup> NMe<sub>2</sub> Me<sub>2</sub>N NMe<sub>2</sub> Me<sub>2</sub>N VMe2 In (I/I<sub>。</sub>) Ð NMe<sub>2</sub> 0.0  ${}^{1}H, {}^{7}Li y {}^{31}P$ -1.0 Me<sub>2</sub>N' NMe<sub>2</sub> Me<sub>2</sub>N -2.0--3.0--4.0 $r_{H}(Li\{HMPA\}_{4}) = 7.0 \text{ Å}$  $r_H$ (free LiCl = 4.3 Å  $r_H$ (free HMPA) = 3.1 Å -5.0free HMPA -6.0--7.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 [G<sup>2</sup> (a.u.)]

Chem. Eur. J. 2005, 11, 1495-1506

# Ruthenium-catalyzed Fridel-Crafts allylation reaction

![](_page_21_Figure_1.jpeg)

Angew. Chem., Int. Ed. 2006, 45, 6386

#### PGSE NMR, CH<sub>3</sub>CN, 2-20 mM, RT

![](_page_22_Figure_1.jpeg)

D (Cation) (2 mM) = 12.07 × 10<sup>-10</sup> m<sup>2</sup> s<sup>-1</sup> D (Anion) (2 mM) = 23.50 × 10<sup>-10</sup> m<sup>2</sup> s<sup>-1</sup>

> r<sub>н</sub> (Cation) = 5.4 Å r<sub>н</sub> (Anion) = 2.8 Å

D (Cation) (10 mM) =  $11.82 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$ D (Anion) (10 mM) =  $22.69 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$  $r_H(Cation) = 5.5 \text{ Å}$  $r_H(Anion) = 3.1 \text{ Å}$ 

D (Cation) (20 mM) =  $11.49 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$ D (Anion) (20 mM) =  $21.57 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$ 

r<sub>H</sub>(Cation) = 5.7 Å r<sub>H</sub>(Anion) = 3.5 Å

Organometallics 2006, 25, 4520

Same catalysis but at different concentration !!

From 10 mM to 0.4 mM !

![](_page_23_Figure_2.jpeg)

Angew. Chem., Int. Ed. 2006, 45, 6386

#### PGSE Diffusion NMR

![](_page_24_Figure_1.jpeg)

# SOLUTION STRUCTURE ??

Multinuclear NMR X/Y Shift Correlation

## Multinuclear NMR: X/Y Shift Correlation Methods

The sensitivity of any heteronuclear NMR experiment is related to  $\gamma$  of starting and detected nuclei, among others parameters

$$S/N \propto \gamma_{start} \gamma_{det\,ect}^{3/2} [1 - \exp\{1/T_{1,start} \times D1\}] \times NS$$

Indirect measurements =  $\gamma^{5/2}$ 

Polarization transfer = 
$$\gamma_{start} \times (\gamma_{detect})^{3/2}$$

In lithiated phosphinamides systems, we wanted to setup the <sup>7</sup>Li(<sup>31</sup>P)/<sup>31</sup>P(<sup>7</sup>Li) Shift correlation experiment.

![](_page_25_Figure_6.jpeg)

#### <sup>31</sup>P-detected <sup>7</sup>Li HMQC NMR, -100 °C, 0.1 M, Et<sub>2</sub>O-d<sub>10</sub>

![](_page_26_Figure_1.jpeg)

Experimental time = 2 h S/N (cross-peak 1-E) = 20

*Chem. Commun.* **2007**, 1142

Mé

#### <sup>31</sup>P-detected <sup>7</sup>Li HMQC NMR, -100 °C, 0.1 M, $E_2O-d_{10}$

![](_page_27_Figure_1.jpeg)

Experimental time = 2 h S/N (cross-peak 1-E) = 300 (15 times more sensitive)

*Chem. Commun.* **2007**, 1142

#### <sup>31</sup>P- vs <sup>7</sup>Li-detected HMQC NMR, -100 °C, 0.1 M, $Et_2O-d_{10}$

#### Lithium-7 detection !!

![](_page_28_Figure_2.jpeg)

Experimental time = 1 h S/N (cross-peak 1-E) = 20 20 x factor = 70 Why applying a correcting factor of 3.5 ?

Experimental time = 1 h 5/N (cross-peak 1-E) = 300

*Chem. Commun.* **2007**, 1142

#### PGSE Diffusion NMR

![](_page_29_Figure_1.jpeg)

SOLUTION STRUCTURE ??

Multinuclear NMR

X/Y Shift Correlation

## Any precedents ??

![](_page_30_Figure_1.jpeg)

Stalke (Angew 1995)

δ (<sup>13</sup>C)<sub>Li</sub> = ~ 195 ppm

![](_page_30_Picture_2.jpeg)

Muller (*Helvetica* 1997)

![](_page_30_Figure_4.jpeg)

Clayden (Angew 2001)

![](_page_30_Figure_6.jpeg)

![](_page_30_Picture_7.jpeg)

![](_page_30_Picture_8.jpeg)

Reich (*Organometallics* 2006)  $\delta$  (<sup>13</sup>*C*)<sub>Li</sub> = ~ 195 ppm

Clayden (Angew 2004)

Van Koten (*Organometallics* 2005)  $\delta$  (<sup>13</sup>C)<sub>Li</sub> = ~ 197 ppm

![](_page_31_Figure_0.jpeg)

![](_page_31_Figure_1.jpeg)

![](_page_32_Figure_0.jpeg)

## <sup>31</sup>P PGSE (STE and SE) diffusion NMR, 0.147 M, -80 °C, THF-d<sub>8</sub>

![](_page_33_Figure_1.jpeg)

![](_page_33_Figure_2.jpeg)

 $D(^{31}P-A) = 0.301 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$ 

 $r_{H}(^{31}P-A) = 5.1 \text{ Å}$ 

 $D(^{31}P-B,C) = 0.233 \times 10^{-10} m^2 s^{-1}$ 

 $r_{H}(^{31}P-B,C) = 6.4 \text{ Å}$ 

![](_page_34_Figure_0.jpeg)

#### <sup>7</sup>Li PGSE (STE) diffusion NMR, 0.147 M, -90 °C, THF-d<sub>8</sub>

![](_page_35_Figure_1.jpeg)

![](_page_35_Figure_2.jpeg)

 $D(^{31}P-A) = 0.301 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$   $D(^{7}Li-A) = 0.299 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$   $r_H(^{31}P)-A = 5.1 \text{ Å}$  $r_H(^{7}Li-A) = 5.1 \text{ Å}$ 

 $\frac{D(^{31}P-B,C)}{r_{H}(^{31}P-B,C)} = 0.233 \times 10^{-10} \text{ m}^{2} \text{ s}^{-1}$   $\frac{D(^{7}Li-B,C)}{r_{H}(^{31}P-B,C)} = 0.231 \times 10^{-10} \text{ m}^{2} \text{ s}^{-1}$   $r_{H}(^{31}P-B,C) = 6.4 \text{ Å}$   $r_{H}(^{7}Li-B,C) = 6.4 \text{ Å}$ 

## <sup>7</sup>Li,<sup>31</sup>P HMQC NMR, -100 °C, 0.147 M, THF-*d*<sub>8</sub>

![](_page_36_Figure_1.jpeg)

Dimers ... , but ... why more than one ??

![](_page_37_Figure_1.jpeg)

 $(R_{P}^{\star}, S_{P}^{\star})$ 

![](_page_37_Picture_3.jpeg)

 $(R_{P}^{*}, R_{P}^{*})$ 

#### <sup>31</sup>P NMR, -80 °C, as a function of concentration

![](_page_38_Figure_1.jpeg)

## <sup>13</sup>C NMR, -100 °C, 0.147 M, THF-*d*<sub>8</sub>

![](_page_39_Figure_1.jpeg)

## <sup>13</sup>C NMR comparison, THF- $d_8$

![](_page_40_Picture_1.jpeg)

DIMERS

δ (<sup>13</sup>*C*)<sub>Li</sub> = ~ 197 ppm

#### MONOMERS

δ (<sup>13</sup>C)<sub>Li</sub> = ~ 207 ppm

δ (<sup>13</sup>C)<sub>Li</sub> = ~ 195 ppm

δ (<sup>13</sup>*C*)<sub>Li</sub> = ~ 210 ppm

![](_page_40_Figure_8.jpeg)

δ (<sup>13</sup>C)<sub>Li</sub> = ~ 209.2 ppm

![](_page_40_Figure_10.jpeg)

S

δ (<sup>13</sup>C)<sub>Li</sub> = ~ 195 ppm

## But... how do they exchange ?? EXchange Spectroscopy

A

![](_page_41_Figure_1.jpeg)

 $(R_{P}^{\star}, S_{P}^{\star})$ 

![](_page_41_Figure_3.jpeg)

 $(R_{P}^{*}, R_{P}^{*})$ 

## <sup>31</sup>P,<sup>31</sup>P EXSY NMR, -80 °C, 0.057 M, THF-d<sub>8</sub>

![](_page_42_Figure_1.jpeg)

# EXSY studies !!

![](_page_43_Figure_1.jpeg)

The two dimers are in exchange only THROUGH the monomer !! And not THROUGH higher aggregations states and/or triple ions !!

## Other X/Y examples currently undergoing...

<sup>31</sup>P,<sup>89</sup>Y HMQC

![](_page_44_Figure_2.jpeg)

![](_page_45_Figure_0.jpeg)

# Other X/Y examples currently undergoing... <sup>31</sup>P,<sup>89</sup>Y HMQC

![](_page_46_Figure_1.jpeg)

![](_page_46_Figure_2.jpeg)

# Acknowledgments

#### . Santiago García-Granda J. Francisco J. González (Oviedo)

Prof. Fernando López Dr. Pascual Oña Cristinel Popovici (Almeria)

Prof. Paul S. Pregosin Dr. Heinz Ruegger (Zurich)

![](_page_47_Picture_4.jpeg)

![](_page_47_Picture_5.jpeg)

![](_page_47_Picture_6.jpeg)

CRIO Centro Nacional de Investigaciones Oncológicas Unprecedented Structures driven by the Phosphinamide Linkage – A Multinuclear NMR Touch

Ignacio Fernández

Universidad de Almería (Spain)

EURACT NMR KARLSRUHE 2010

## Convection: A quite familiar problem on RLi diffusion

![](_page_49_Figure_1.jpeg)

In laminar flow conditions where  $(u^2 \times D)$   $\ll D$  and  $d \ll D$  (most common case), the apparent diffusion coefficient appears

![](_page_49_Figure_3.jpeg)

#### Wrong D values

Langmuir 2000, 16, 7548. Helv. Chim. Acta 2003, 86, 2364.

## Convection: A quite familiar problem on RLi measurements

Double stimulated echo sequences
Spinning
Concentric tubes

![](_page_50_Figure_2.jpeg)

Helv. Chim. Acta 2003, 86, 2364.

#### <sup>31</sup>P,<sup>31</sup>P EXSY NMR, -80 °C, 0.057 M, THF-*d*<sub>8</sub>

The 2D **EXSY** technique provides off-diagonal responses for spins which exchange slowly with one another. The EXSY (method is useful for showing exchange when the grite of the same order as the T1 relaxation rate ( $1^{17}$ T1) but less than the frequency difference between the two spins (in the absence of exchange)

![](_page_51_Figure_2.jpeg)

## 1) Diethyl Ether - $C_{\alpha}$ metalation - Double Asymmetric Induction

![](_page_52_Figure_1.jpeg)

RHC=CH(O)R

*Org. Lett.* **2008**, 10, 3195

# Multinuclear NMR: X/Y Shift Correlation

![](_page_53_Figure_1.jpeg)

![](_page_54_Figure_0.jpeg)

#### <sup>31</sup>P,<sup>31</sup>P EXSY NMR -115 °C, 0.147 M, THF-*d*<sub>8</sub>

![](_page_55_Figure_1.jpeg)

## <sup>31</sup>P,<sup>31</sup>P EXSY NMR, -80 °C, 0.057 M, THF-d<sub>8</sub>

#### t<sub>m</sub> (mixing time) = 2.4 ms (instrument limit)

A

B

С

The 2D **EXSY** technique provides off-diagonal responses for spins which exchange slowly with one another.

![](_page_56_Figure_3.jpeg)

$$A = \begin{vmatrix} I_{11} / M_1 & I_{12} / M_2 \\ I_{21} / M_1 & I_{22} / M_2 \end{vmatrix}$$

$$R = \begin{vmatrix} -R_1 - k_1 & k_{-1} \\ k_1 & -R_2 - k_{-1} \end{vmatrix}$$

R = -

ln A

 $t_m$ 

#### Calculations

#### Optimized geometry of both complexes at B3LYP/6-311+G(2d,p) level of theory. ( $C_i$ symmetry)

![](_page_57_Figure_2.jpeg)

![](_page_57_Picture_3.jpeg)

E<sub>rel</sub> = + 5.8 kcal/mol

![](_page_57_Figure_5.jpeg)

#### NMR and Calculations

<sup>13</sup>*C*{<sup>31</sup>P} NMR, -100 °*C* 

![](_page_58_Figure_2.jpeg)

<sup>13</sup>C NMR GIAO chemical shift (referred to TMS) of the lithiated carbon in both complexes. Calculations at B3LYP/6-311+G(2d,p) level of theory.

## So then ... dimers based on $Li_2O_2$ cores !

![](_page_59_Figure_1.jpeg)

![](_page_59_Figure_2.jpeg)

![](_page_59_Figure_3.jpeg)

![](_page_59_Picture_4.jpeg)