Slow MAS Methodologies Towards to Radioactive Materials???

EURACT 2010

Alan Wong

CEA Saclay, France

Safety Precaution for MAS Experiments

I Farnan, H Cho, WJ Weber et al. Rev Sci Instr 75, 5232 (2004)

Triple-containment MAS System

Prevent leakage especially during sample spinning !!

(1) 'SLOW' Magic-Angle Spinning

- Minimized centrifugal force ($F=mv^2r$) from spinning
- Enhanced safety
- Lessen sample invasion
- High-resolution

Problem with Slow MAS Spectroscopy

Ethonal/D₂O with Glass Bleads

Tool Kits for High-Resolution Slow MAS

MAH: A Bax et al JMR 52, 147 (1983) TOSS: WT Dixon JMR 44, 220 (1981) MAT

Z Gan JACS 114, 8307 (1992)

5π-**ΜΑΤ**

JZ Hu et al JMR A105, 82 (1993)

2D-PASS

ON Antzutkin et al JMR A115, 7 (1995)

PHORMAT

JZ Hu et al JMR A113, 210 (1995)

DMAT

Slow Magic-Angle Spinning

- Smooth grooveless rotor cap
- Big Rotor (if possible)
- Dense Insert (if possible)
- 45 \pm <1Hz

High-Resolution Slow ¹³C MAS

L-Alanine (3 C sites)

High-Resolution Slow ²⁹Si MAS

Amorphous Borosilicate glass (CE-57)

Multi-dimensional Imaging: Combined Stray Field with Slow MAS

JH Baltisberger et al JMR 172, 79 (2005)

An Easy and Effective Imaging Approach !!!

11.75 T Widebore Bruker 500 UltraShield[™] Magnet

Multi-dimensional Imaging: STRAFI-MAS

Sample Rotation

STRAFI-MAS Experiment

STRAFI-MAS Imaging

498.88 MHz at 11.75 T **Gz ~ 0.6 T/m** ~19 x 380 μm ~19 x 743 x 380 μm; 30 min 32 hr

²⁹Si Image

99.16 MHz at 11.75 T **Gz ~ 0.4 T/m** ~56 x 520 μm 39 hr

STRAFI-MAS Selective ²³Na Imaging

79.2 MHz at 7.05 T Gz ~ 0.15 T/m

Without TQF NaCl(aq) 5% w/v Agar NaCl gel 0 1 mm

With TQF

(2) Magic-Angle Coil Spinning (MACS)

- Signal enhancement
- High-resolution
- Size/Volume variations

Magic-Angle Coiled Spinning (MACS)

486 MHz

530/660 μ m (id/od) capillary

²⁹Si MACS Spectroscopy

D Sakellariou et al, Nature 477, 694 (2007)

Micro-Sized Slow MACS Spectroscopy

Bovine tissue (H metabolites)

(3) Portable Permanent Magnet

- On-site (*ex-situ* and *in-situ*) measurement
- Low cost

Cedric Hugon, Guy Aubert and Dimitris Sakellariou

Approach to Magnet Design

- Field variation
- Good field homogeneity
- Low cost & portability

$$B_{x}(r,\theta,\phi) = Z_{0}$$

+ $\sum_{n=1}^{\infty} r^{n} \left[Z_{n} P_{n}(\cos\theta) + \sum_{m=1}^{n} (X_{n}^{m} \cos m\phi + Y_{m}^{m} \sin m\phi) P_{n}^{m}(\cos\theta) \right]$

Cylindrical In-situ Magnet

- low cost <200 €
- •B₀=120 mT
- • ΔB = 6 ppm in 2mm diameter

Field Measurement

¹H NMR Measurement

C Hugon et al CR Chimie 2010 in press C Hugon et al JMR 2010 submitted

Single-Sided Ex-situ Magnet

- B₀= 0.3 T
- ΔB = 3.3 T/m
- Sweet spot @ 2cm from surface
- 1cm diameter spherical volume (with ppm uniform gradient)
- Penetration up to 7cm (with uniform gradient)

Imagine

Conclusions

- 1. Slow-MAS spectroscopy and imaging
 - a. Enhanced safety precaution from spinning
- 2. Magic-angle coil spinning
 - a. Signal enhancement
 - b. Capable of micro-sized sample
- 3. Portable permanent magnet
 - a. On-site (*in-* or *ex-situ*) NMR/MRI experiments

THANK YOU !!!