

Rainer Kerssebaum, Bruker BioSpin, Germany

1960: KIS 25

Trüb Täuber in cooperation with ETH Zurich

NMR with Tubes

KIS 25 Spectrometer

Highest Resolution 1960

Ethyl alcohol slightly acid

Courtesy of Prof. Richard Ernst

1972: WH90 - First FT only System

Ancestor of all modern Spectrometers

¹³C on Myoglobin

Modern electronics: SGU, IPSO

Cutting edge Micro-electronics replace aging Synthesizer Technology

Over 3000 Components on (22 x 27) cm²

Board with:

Layers	16
BGA's	30
Connection	10000
VIA's	13000
Pins	14000

NMR Sensitivity 0.1% EB 5mm tube

Bruker UHF Magnet Milestones

- 1992 First 750 MHz NMR magnet
- 1995 First 800 MHz NMR magnet
- 1998 First 750 MHz wide bore magnet
- 2001 First 900 MHz NMR magnet
- 2004 First 850 MHz WB shielded magnet
- 2004 First 900 MHz shielded magnet
- 2006 First 800 MHz compact shielded mag
- 2006 First 950 MHz shielded magnet
- 2009 First 900 MHz WB shielded magnet
- 2009 First 850 MHz compact shielded mag
- 2009 First 1000 MHz NMR Magnet

Highest Field Compact NMR Magnet

Recent Bruker Innovations

- Compact size and small stray field improve siting flexibility
- Outstanding stability and high-resolution NMR performance

Highest Field Wide Bore NMR Magnet

Recent Bruker Innovations

900 MHz 89 mm US²

- Expands the highest field available on actively-shielded wide bore magnets to 900 MHz
- Combines UltraStabilized[™] sub-cooling and UltraShield[™] active shielding technologies
- Improved protection against external perturbations for outstanding stability and high-resolution NMR performance

homogeneity 1 GHz NMR magnet

Avance 1000 - World's First 1 GHz NMR Spectrometer

Persistent superconducting magnet

World's first, standard-bore, high

- UltraStabilized[™] sub-cooling technology
- Magnetic field strength of 23.5 Tesla
- Proton NMR frequency of 1000 MHz
- Standard bore size of 54 mm
- The high field strength and high field stability in combination with the first 1 GHz 5mm tripleresonance CryoProbe[™] enables unique 1 GHz NMR applications

First AVANCE 1000 installation in Lyon

• The first 1 GHz system is installed at the new 'Centre de RMN à Très Hauts Champs' in Lyon, France

800 MHz Magnet Delivery

Magnet insight

Long Term Commitment to UHF NMR

(UHF = ultra high field)

- Subcooled NMR magnets (2K) improve the properties of the superconducting wires.
- Reduction of temperature around the superconductors is essential to achieve stable magnets at ultrahighfield strength.
- Extremely high stability of helium bath temperature (thermal barrier between 2K and 4 K reservoir)
- Very low field drift

unique performance, stability and safety

Cross-Sectional View of typical Superconducting Wires for NMR Magnets

Superconducting Wire

Filament Dimensions

Nb₃Sn

NbTi

~16000 Filaments

54 Single Wires

1 GHz NMR Applications with Cryoprobe

1ppm @ 600 MHz: 600 Hz 1ppm @ 1000 MHz: 1000 Hz

¹H-¹⁵N HSQC Spectrum

1 GHz NMR Applications with CryoProbe

- 2D carbon detected CC-TOCSY
- 12 ms mixing time
- NS=4
- exp. time: 1 hour

• NS=4

TROSY-HNCA

Sample: 2.0mM Ubiquitin in 90% H2O/10% D2O (uniformly labeled with 13C and 15N)

1 GHz NMR, CryoProbe and Fast Acquisition

• 3D TROSY-HNCA

- Non-uniform sampling mode (10% of regular sampled data points actually recorded)
- Exp. time: 80 minutes !

Detection Limit ¹H NMR

\Rightarrow Dynamic Nuclear Polarisation (DNP)

DNP – Sensitivity boost for solid state NMR

263 GHz solids DNP spectrometer

Dynamic Nuclear Polarization (DNP) can be used to increase the sensitivity of NMR experiments by transferring the much higher polarization of unpaired electrons spins to nuclear spins. This polarization transfer is driven by high frequency microwave irradiation. The Bruker BioSpin 263 GHz solids DNP spectrometer consists of five main development areas:

- 25 W 263 GHz gyrotron tube
- 9.7 T gyrotron magnet with superconducting gun coil
- Control system hardware and software, power supplies and cooling networks
- 263 GHz microwave transmission line from gyrotron to NMR sample
- Low temperature MAS probe with built-in waveguide and cold gas supply

28

Bruker BioSpin

Dynamic Nuclear Polarization – DNP

- Enhance nuclear polarization by • transfer from electrons
- **Principles known since 50 years** ۲
- **Potential gains:** •

 $\gamma_e \gamma_N$

- For protons: ~660 •
- For carbons: ~2600 •
- **Ingredients**: •
 - Unpaired electron spin
 - Internal or additive
 - µ-waves !

Solid State DNP Spectrometer Components

263 GHz Gyrotron Accessory

DNP Spectrometer in Billerica operational since July 2008

263 GHz DNP-NMR Spectrometer at FMP/Berlin

Operational since February 2009

Bruker BioSpin

EURACT-NMR Workshop, Karlsruhe, Germany, Jan. 27-29, 2010

263 GHz DNP Experiment at 105 K

¹³C Chemical Shift (ppm)

DNP-Enhanced CPMAS of ¹³C-Proline

¹³C Chemical Shift (ppm)

- 25 ml sample, 1.5 mg U-¹³C-¹⁵N Proline, 8 kHz MAS, CPMAS with 100 kHz Spinal 64 decoupling, 110 K sample temperature
- 8 seconds acquisition time for both microwaves on and off spectra
- Glycerol/Water, 20 mM TOTAPOL

DNP Experiment: Barnase Ribosome Complex

 ¹H driven spin diffusion ¹³C-¹³C correlation experiment on Barnase ribosome nascent chain complex with 10 mM TOTAPOL (nascent chain ¹³C labelled)

Sample courtesy of Hartmut Oschkinat, Leibnizinstitut für Molekulare Pharmakologie, Berlin

Para Hydrogen Induced Polarisation (PHIP)

- Para hydrogen has anti-parallel spins > NMR invisible
- Reaction with para hydrogen yields hyperpolarised molecule
 NMR visible if the two protons have different chemical shift
- Enhanced absorption and emission signals

- R. Eisenberg Acc. Chem. Res. 1991, 24, 110. (PHIP)
- D. P.Weitekamp et al. J. Am. Chem. Soc. 1987, 109, 5541. (PASADENA)
- J. Bargon et al. Prog. Nuc. Mag. Res. 1997, 31, 293.
- S. Duckett et al. Dalton. 2004, 2601.

All results courtesy Simon Duckett and Gary Green, University of York

THE UNIVERSITY of York

T-NMR Workshop, Karlsruhe, Germany, Jan. 27-29, 2010

35

Polarisation Transfer in Low Magnetic Field

- Temporary association of substrate and pH₂ on polarisation template
- Redistribution of magnetisation via J-coupling (strong coupling)
- pH₂ polarisation is transferred to all nuclei in coupling network
- Substrate remains chemically unchanged

All results courtesy Simon Duckett and Gary Green, University of York Bruker BioSpin

JRACT-NMR Workshop, Karlsruhe, Germany, Jan. 27-29, 2010

First results with prototype polariser

THE UNIVERSITY of York

All results courtesy Simon Duckett and Gary Green, University of York

Polarisation is transfered to X-Nuclei

All results courtesy Simon Duckett and Gary Green, University of York

THE UNIVERSITY of York

JRACT-NMR Workshop, Karlsruhe, Germany, Jan. 27-29, 2010

What can be Polarised?

Tritium CryoProbe

Applications for ³H-NMR

Tritium is a perfect spy to study (bio)chemical reactions

,Tracking the Molecules of Life'

- Binding studies of ATP utilizing enzymes
- DNA, RNA: conformational dynamics
- Glucose metabolism in erythrocytes
- Determination of stereochemistry
-

BUT: due to radioactivity only low concentration tritiated samples can be used

Hydrogenation of a hydrocarbon sample (A) RT probe (B) with CryoProbe

Courtesy of J. P. Bloxsidge, J. R. Jones, E. Alexakis, W. J. S. Lockley, R. N. Garman, D. G. Gillies and Shui-Yu Lu School of Biological and Molecular Sciences, University of Surrey, Guildford UK

Hydrogenation of a hydrocarbon sample (A) RT probe (B) with CryoProbe

Courtesy of J. P. Bloxsidge, J. R. Jones, E. Alexakis, W. J. S. Lockley, R. N. Garman, D. G. Gillies and Shui-Yu Lu School of Biological and Molecular Sciences, University of Surrey, Guildford UK

Measured values 500 MHz ³H CryoProbe

Sample No	Radioactivity		S/N ratios		Enhancement
	(MBq)	(μ Ci)	RT probe	³ H CryoProbe	
1	165	4459	2230	7350	3.3
2	15	405	170	870	5.1
3	2.5	68	32	147	4.6
4	0.4	11	-	21	-
		×			
Detection limit					

Courtesy of J. P. Bloxsidge, J. R. Jones, E. Alexakis, W. J. S. Lockley, R. N. Garman, D. G. Gillies and Shui-Yu Lu School of Biological and Molecular Sciences, University of Surrey, Guildford UK

www.bruker-biospin.com